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Some general stability criteria for non-dissipative swirling flows are derived, and 
extended to the case of an electrically conducting fluid in the presence of axial 
magnetic field and current. In  particular it is shown that the analogy between a 
rotating and a stratified fluid holds in this case, and that an important determinant 
of stability is a ‘Richardson number’ based on the analogue of the density 
gradient and the shear in the axial flow. 

1. Introduction 
In  this paper we study the stability of inviscid flows between concentric 

cylinders, which have an axial velocity component W ( r ) ,  depending only on the 
radius r ,  in addition to a ‘swirl’ component V ( r )  in the direction of increasing 
azimuth angle 8. We shall for the most part restrict attention to the case of 
axisymmetric perturbations. This is an important restriction, for if non-axisym- 
metric perturbations are included, new mechanisms of instability may become 
possible-nevertheless we feel that the study of the axisymmetric case has an 
interest of its own, and leads to a physical understanding of one important type 
of instability to which non-parallel flows in general are subject. 

In  the case of zero axial flow, the inviscid stability problem for axisymmetric 
disturbances has been well understood since Rayleigh (1916) gave his criterion 
that a necessary and sufficient condition for stability is that the square of the 
circulation, (rV)2,  should nowhere decrease as r increases from the inner to the 
outer cylinder. As Rayleigh remarked, this problem has a strong analogy with 
the stability of a density-stratified fluid at rest, under the action of gravity; so 
long as only axisymmetric perturbations are considered, one may ignore the 
rotation and think of the fluid as being subject to a radially outward ‘gravitational 
field’, and having a ‘density’ which is determined by the distribution of velocity 
V(r) .  In  this interpretation, Rayleigh’s criterion is simply the condition that for 
stability the ‘density’ should not decrease ‘downward’, i.e. outward. The 
‘potential energy of gravity ’ in the analogue is in fact equal to the kinetic energy 
associated with the swirl velocity. 

This analogy suggests that when an axial flow is also present, the effect of the 
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swirl component may be analogous to the effect of density stratification (in the 
presence of gravity) on a parallel shear flow. In  the latter case it is known that a 
statically stable density stratification usually tends to have a stabilizing influence 
on any shear instability which may be present, this effect being measured by the 
Richardson number; and it has been shown (Miles 1961, see also Howard 1961) 
that complete stability is insured if the local Richardson number everywhere 
exceeds $. Furthermore, examples are known (eg. Drazin 1958) which show that 
a t  least in some cases t is the smallest value of the Richardson number which will 
insure stability. 

On the other hand, Chandrasekhar ( 1 9 6 0 ~ ;  1961, $786) has considered the 
stability of inviscid flows with both axial and swirl components and has con- 
cluded that the effect of the swirl component is absolute, stability being deter- 
mined by Rayleigh’s criterion alone, without reference to the axial component. 
This physically rather implausible result we believe to be incorrect; the swirl 
component, if Rayleigh’s criterion for stability is satisfied, does have a certain 
stabilizing influence, but one which in general is effective in producing complete 
stability only if it  is sufficiently strong in comparison with the shear in the axial 
component. In  0 2 we shall show that the gravitational analogy does carry over 
to the case of a superposed axial flow; a suitable ‘Richardson number’ can be 
defined and a sufficient condition for stability (to axisymmetric perturbations) 
is that it  should everywhere exceed t. We shall also show that the complex wave 
speed for any unstable mode must lie in a certain semicircle, a result also known 
for stratified parallel shear flow. 

If the fluid is taken to be a perfect electric conductor and subjected to an axial 
current distribution, i.e. a transverse circular magnetic field, it is known in the 
case of zero axial flow (Michael 1954) that the magnetic field has an effect similar 
to that of the swirl velocity and that Rayleigh’s criterion, with a modified 
‘effective density’, continues to hold. Here the ‘potential energy of gravity’ is 
the sum of the kinetic energy of the swirl component and the energy of the trans- 
verse magnetic field. In  § 4 we shall show that the analogy with a stratified shear 
flow persists here also when an axial velocity is superposed, and that the 
‘Richardson number 3 $’ and semicircle theorems hold. In  $3 5 and 6 we discuss 
some related results, for the case when a uniform axial magnetic field is also 
present, in particular a result analogous to one obtained by Velikhov (19590,) for 
non-dissipative parallel shear flow with a parallel magnetic field, and a generaliza- 
tion of some results of Chandrasekhar (1960b) and Velikhov (1959b), for the case 
of zero axial flow. In  the last section we summarize the results known to us a t  
present on the stability of non-dissipative flows involving combinations of the 
four components: swirl velocity, axial velocity, axial current and axial magnetic 
field. 

2. Swirling flow 
The differential equation which determines the stability to axisymmetric 

perturbations of an inviscid flow, between cylinders r = R, and r = R2, with basic 
velocity U = V(r)  6, + W(r)  k is: 

D[(W-c)2D*F]-k2(W-c)2F+@F = 0, (1) 
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where D = d /dr ,  D ,  = d/dr+ l /r,  the perturbation velocities are given by 

u = &( W - c )  J7 eik(Z-ct), 

2, = - (D, v) p eik(z-ct), 

( 3 )  

(3) 

and 
w = -D,[( W -c) F ]  eik(z-ct), 

(3 = r-3D[r2V2]. 
(4) 

(5) 

A convenient reference for the derivation of this equation is Chandrasekhar 
(1961, $78).  The boundary conditions are that F = 0 on r = R, and R,; the flow is 
unstable if (1) and the boundary conditions have a non-trivial solution with 
Imc > 0. 

The analogous equation for the stability to axisymmetric perturbations of an 
axial flow, U = W ( r )  k, of an inviscid fluid with basic density field po(r)  subject t o  
a 'gravitational' force gr, in the direction away from the axis (here we take g 
constant for simplicity, though there is no difficulty in allowing g to vary with r )  
is easily derived, and is 

D[p,( W - c ) ~ D *  F ]  - k2p0( W - c)'F +gph F = 0, (6) 

where the symbols have the same meaning as before, except that there is now no 
swirl component V and equation (3) is to be replaced by a formula for the 
perturbation density p:  

p = - (Dp,) F eik(z-ct). (7)  

If we make the common approximation in stratified flow stability theory of 
neglecting the inertial effects of density variation, (6) becomes: 

D[( W -c),D* F ]  - k2( W - C ) ' ~ +  (gpJpo)F = 0, ( 8 )  

i.e. equation (1)  with @ = gpA/p,. The two problems are thus mathematically 
equivalent. It is in fact possible t o  show that the full non-linear equations of 
axisymmetric swirling flow are identical with those of a stratified axial flow 
subject to a suitable radial gravity, inertial effects of the stratification being 
neglected. 

Equation (8) is almost identical with the equation for stability of a parallel 
stratified flow subject to a uniform vertically downward gravitational field; this 
is obtained from (8) by replacing D, by D, and interpreting r as the vertical 
co-ordinate, increasing downward. The argument given by Chandrasekhar (1961, 
5 7 8 b )  apparently shows that @ > 0 implies that (1)  can have no unstable solu- 
tions, but this argument makes no essential use of the difference between D and 
D, , and applies just as well to the stability problem for stratified parallel shear 
flow, where the conclusion would be that a statically stable density stratification 
always stabilizes any parallel shear flow. The argument thus proves too much. 
Equation (1) can, however, be studied by the techniques which have been used in 
the problem of parallel stratified shear flow (Howard 1961). We now carry this out. 

Suppose (1)  and the boundary conditions have a non-trivial solution P with 
Im c > 0. Then W - c does not vanish on [R,, R,] and we can form a square root 
( W - c)& which is as smooth as W is; we assume W to be continuous and piecewise 
continuously differentiable. (It can be shown that the flow is always unstable for 

30 Fluid Mech. 14 



466 Louis N .  Howard and A .  X. Gupta 

some wavelengths if W is discontinuous.) Let G = ( W - c)g F ,  and write (1) in 
terms of G. The result is 

D[(W-c)D,  G]++(W’/r-  W ” ) G - ~ W ‘ 2 ( W - c ) - 1 G  

- ~ ~ ( W - C ) G + C D ( W - C ) - ~ G  = 0. (9) 

Multiplying this equation by r c  and integrating over (Rl, R,) we get 

(W-c)  [ID* GI2+k2 (rW“- W’) 1GI2rdr 

The imaginary part of this equation, if ci = Im c > 0, gives 

which is impossible if CD is everywhere 2 4 W’2. Thus a sufficient condition for 
stability is that CD - 4 W‘2 be everywhere non-negative. If we define a local 

(12) 
Richardson number J ( y )  by J ( y )  O/W,2,  

which equation (8) shows to be the natural definition by analogy with the variable 
density problem, the stability condition is J(y)  2 4 everywhere. (If W‘ = 0 some- 
where, we allow J = +a) It should perhaps be emphasized again that this 
applies only to axisymmetric perturbations. Swirling flows are sometimes un- 
stable to non-axisymmetric perturbations even if J ( y )  2 4 everywhere. 

If the same procedure is applied to equation (1) instead of (9) we obtain the 
integral relation 

Supposing CD 2 0, i.e. considering the case which is stable if W E 0, and setting 
c = c, + ici (ci > 0 ) ,  (13) gives 

WQdr  = c,/;Qdr and 1; W2Qdr 2 (c: + c:) 

Suppose a < W < b. Then 

0 2 J Z ( W - a ) ( W - b ) Q d r  2 [c ,2+c:-(a+b)cr+ab]  

and thus [c, - *(a + b)]2 + Cf < * (a - b)2. (17) 
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Thus the complex wave speed c for any unstable mode must lie inside the 
semicircle in the upper half plane which has the range of W for diameter, 
if 2 0. 

In  the present problem, as in the parallel stratified flow case, there are usually 
infinitely many neutrally stable waves, with real c lying outside the range of W .  
These are present when W = 0, and are then the internal waves, in a stratified 
fluid, and the (axisymmetric) normal modes of a rotating column, in the present 
case. When W + 0 such neutral modes have been proved to exist, under certain 
weak hypotheses about W and V by Chandrasekhar (1961,s 78b), in the present 
case, and by Miles (1961) in the stratified flow case. The semicircle theorem shows 
that these should be regarded as modifications by W of the (isolated) normal 
modes already present when W =_ 0; they cannot be limits of unstable waves. 
However, there may be singular neutral modes, adjacent to unstable waves, with 
c in the range of W ;  this possibility, which was overlooked by Chandrasekhar, 
has been discussed at length, in the stratified flow case, by Miles (1961). 

We have seen that stability is assured if the local Richardson number every- 
where exceeds $, but the violation of this condition does not necessarily imply 
instability, as is known from examples in the analogous case of parallel stratified 
flow with vertical gravity (for instance, the plane Couette flow with exponential 
density is stable for all J 2 0). On the other hand, it would be desirable to show 
that at  least for some flows instability does occur for J < $, i.e. that as a general 
condition for stability J 2 f cannot be improved upon. Unfortunately, examples 
of swirling flows for which the stability problem can be explicitly solved do not 
seem to be readily found. Some cases with broken-line velocity profiles can be 
solved, but the formulas are rather weighted down with Bessel functions, and the 
results are not too easily seen without numerical calculation. However, if we make 
the ‘narrow-gap approximation’, i.e. assume that (R,-R,)JR, < 1, we may 
replace D, by D in (1) )  and the stability equation becomes identical with that of 
parallel stratified flow with a vertical gravity. Any examples for this case can 
thus be taken over. If we furthermore assume that R, - R,, while small compared 
with R,, is large compared with the scale of variation of W (the ‘wide narrow-gap 
approximation’) we may in fact take over as examples any solutions to the 
stability problem for unbounded parallel stratified flow with gravity. The example 
of Drazin (1958) is perhaps the simplest, and shows that f cannot be replaced by 
any smaller number in the stability condition ‘ J ( y )  2 f everywhere’. 

3. Remarks on the non-axisymmetric case 
It is perhaps of interest to consider what can be done with these methods when 

the perturbations are not required to be axisymmetric. If we suppose that the 
radial perturbation velocity is u(r)  ei(uL+kz+mo), and that the other perturbation 
quantities depend similarly ont, x and 8, it is possible to eliminate all the dependent 
variables but u from the linearized perturbation equations and so obtain the 
following stability equation: 

y2D[XD, u] - {y2 + yR.D[S(r-lDy + 2mV/r3)] - 2EV r2X[krD,  V - mD W ] } u  = 0 ,  

(18) 
30-2 
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where y = CT + k W + mV/r  and S = r2[m2 + (When m = 0 this reduces to 
( l ) ,  with u = ik( W - c )  F ,  g = - kc.) The motion is unstable if (18) possesses a 
non-trivialsolutionwith u(Rl) = u(R2) = OandIm g < 0. Supposingthatwe have 
an unstable case, set u = Hyl-n, some definite branch being selected when n is 
not an integer as in the case discussed previously (with n = Q) in the paragraph 
before equation (9). In  terms of H ,  equation (18) becomes 

D[Xy2(1-n)D, HI - y2(1-n) (1 + y1[2mrD(XV/r3)  + nr D(Xr-1 Dy)] 
+ y-2X[n( 1 - n) - (2kV/r2) (kr D, V - mD W ) ] }  H = 0. ( 1 9 )  

n = 1 in ( 1 9 )  yields (18) ,  with H = u; n = 0 corresponds to ( 1 )  with H = F ,  and 
n = 4 to (9), with H = G. Taking first n = 8,  multiplying ( 1 9 )  by rH and inte- 
grating over (Rl, R,) we deduce the analogue of (10) .  From the imaginary part of 
this, recalling that Im c < 0,  we obtain the following analogue of ( 1  1 )  : 

(20) gives as a sufficient condition for stability 

k2@-(2km/r2) V D W - i [ k D W + m D ( V / r ) ] 2  2 0 everywhere. ( 2 1 )  

For m = 0 we recover the axisymmetric condition @ 2 but if m + 0, the 
condition ( 2 1 )  is always violated for sufficiently small k, and while this does not 
imply instability, it shows that no general stability criterion is obtainable in this 
way. (That ( 2 1 )  is violated for small E is immediately obvious if D( V / r )  $0;  in 
the exceptional case of rigid rotation, a second look shows that it is also sometimes 
violated here, since m can take either sign, unless DW = 0,  i.e. essentially unless 
W = 0. Rigid rotation without axial flow is stable.) While ( 2 1 )  gives no general 
stability criterion it can be used to obtain bounds on the values of m/k which are 
possible for unstable waves. (20) can also be used to obtain an upper bound on the 
growth rate C T ~  = Im c possible for any instability, for it implies 

and since IyI2 2 af we find 

c: 6 MaxX[$(Dy)2- k 2 0 +  (2km/r2) VOW] 

Returning now to (19 ) ,  take n = 1, multiply by rH, and integrate over (Rl, R2).  
This gives 

a relation analogous to that used in the derivation of Rayleigh's theorem on the 
necessity of an inflexion point for instability of parallel inviscid flow (Rayleigh 
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1916). We have not succeeded in drawing any general conclusions from this 
relation, but in certain special cases analogues of Rayleigh’s inflexion-point 
theorem can be obtained, namely in those cases in which the last term in the 
second integral is zero. In  such a case, exactly as in the proof of Rayleigh’s 
theorem, we can conclude that for instability to occur it is necessary that the 
coefficient of y-l should change sign in (Rl, R2). We thus obtain the following 
results: 

(a)  I% = 0 (two-dimensional perturbations of swirling flow). Here 

S = r2/m2 and Dy = mD( 8 / r )  = (m/r )  D, 8-  2mV/r2, 

so 2mrD(SV/r3) + rD(SR-IDy) = ( r /m)  DD, 8. 

Since D, V is the vorticity of the basic swirl component, a sufficient condition for 
stability is that this vorticity should be a monotonic function of r on (Rl, R2). 
This result is due to Rayleigh (1880), who derived it in the case W = 0;  for two- 
dimensional perturbations the presence of an axial flow is of course irrelevant. 

(b)  V = 0 (non-axisymmetric perturbations of pure axial flow). Here 
Dy = kDW, and the quantity which (for instability) must change sign in 
(Rl, R,) is D{r(m2+ lc2r2)-l OW},  i.e. a sufficient condition for stability is that 
r(m2+ k2r2)-l DWshould be monotonic. This result is also due to Rayleigh (1892). 

( c )  m = 0,  D,  V = 0 (axisymmetric perturbations of axial flow with a super- 
posed irrotational vortex). Here S = k-2, D y  = kDW, and the quantity which 
must change sign is D(r-lDW). Thus Rayleigh’s condition (b)  for pure axial flow 
also applies with a superposed irrotational swirl, so long as only axisymmetric 
perturbations are considered. In  this case, of course, the results of $ 2  apply; 
the present condition is an additional requirement supplementing the Richardson 
number theorem. In fact if D, V = 0, @ f 0,  and so J(y) = 0. Since this is < $, 
the results of $ 2  do not imply stability for any W(y) other than a constant. 

If we take n = 0 in (19) and follow the same procedure as above we obtain a 
relation analogous to (13) which in the axisymmetric case gives the semicircle 
theorem. We have not, however, been able to deduce any general results from it 
in the non-axisymmetric case. 

The overall conclusion of this consideration of the non-axisymmetric case is 
thus essentially negative : the methods used to derive the Richardson number and 
semicircle results in the axisymmetric case reproduce the known results of 
Rayleigh for two-dimensional perturbations and pure axial flow, but seem to give 
very little more. In  fact the present situation with regard to non-axisymmetric 
perturbations seems to be very unsatisfactory from a theoretical point of view. 
While there are a number of special examples, particularly in related hydro- 
magnetic problems with no basic motion, in which the stability to non-axisym- 
metric perturbations has been studied by solving explicitly the differential 
equation, we know of no general results beyond those of Rayleigh cited above. 
An attempt has been made by Ludwieg (1960,1961 a )  to treat the case of swirling 
flow, but although his argument has some plausibility (without, it  seems to us, 
giving a mathematical proof) in the context of its original presentation for a very 
special kind of swirling flow, the wider extension of his stability criterion sug- 
gested in Ludwieg (1961 b) cannot be justified, counter-examples being readily 
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found. The attempt bychandrasekhar ( 1 9 6 0 ~ ;  1961,$ 67) to show that Rayleigh's 
criterion Q, 2 0 for stability to axisymmetric perturbations of inviscid Couette 
flow also applies to non-axisymmetric perturbations has also been unsuccessful ; 
the simplest counter-example is probably V = 0 for R, < r < Q(R,+R,), V = 1 
for +(R,+R,) < r < R,, which is unstable (for instance) to two-dimensional 
perturbations although the circulation is non-decreasing outwards. 

4. Swirling flow of an infinitely electrically conducting fluid with a 
current parallel to the axis 

In  this section we take the basic steady flow to be [0, V(r ) ,  W ( r ) ]  as before, and 
suppose that the basic magnetic field is [0, He(?-), 01, cylindrical co-ordinates being 
used and the circular magnetic field He(r) produced by a suitable distribution of 
axial current. The stability problem for this flow has been considered in the case 
W = 0 by Michael (1954)) who has found an analogue of Rayleigh's criterion, 
namely, a necessary and sufficient condition for stability to axisymmetric per- 
turbations is that the quantity 

should be everywhere non-negative. Michael's result shows that when W = 0 
this hydromagnetic problem is analogous to the problem of stability of a 
cylindrically stratified fluid a t  rest, under the action of a radial gravity, just as in 
Rayleigh's case with He = 0, and this suggests that also when an axial flow is 
present the effect of the axial current may similarly just modify the density 
distribution in the analogous stratified-flow problem discussed in $2 .  We now 
verify that this is the case by deriving the stability equation for the case W + 0. 

For the basic equations of non-dissipative hydromagnetics we may refer to 
Chandrasekhar (1961, Q SO), with the dissipative terms omitted. From these 
equations and with the basic flow and field given above, the usual process of 
linearization leads, with a (2 ,  t)-dependence of the form eik(z-ct), to the following 
system of perturbation equations (axisymmetric perturbations only are con- 
sidered, and lowercase letters are used for the perturbation velocity and field 

Y ( r )  = - (p/47rp) rD(Hg/r2) (24)  

ik( W - C )  u - 2 Vv/r  + (p/27~p) He he/r = - Dp, ( 2 5 )  

ik(W-c)v+uD* V = 0, (26) 

ik(W-c)w+uDW = -ikp, (27 1 
(28 )  

(29 )  

(30) 

u = i k (W-c)F ( 3 1 )  

v = -(D* V ) F ,  (32 )  

w = -D*[(W-c)F] ,  (33 )  

he = -rD(He/r) F ,  (34) 
p = (W-c)'D*P. (35 )  

ik (  W - C )  he + ruD(He/r) = 0 ,  

D,  u + ikw 5 0,  

h, = hz = 0 

( p  is a suitable perturbation pressure, including magnetic effects). If we set 

(assuming that Imc > 0)) we find 
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(Since (31) gives the boundary condition P = 0 on R, and R,, (34) shows that for 
consistency we should take the cylindrical walls to be non-conducting.) Using 
these in (25), we get 

D[( W - c)2D, F] - k2( W - c),F + [@ - (,447rp) rD(Hg/rz)] P = 0. (36) 

This equation is identical with (1) except that Rayleigh’s discriminant @ is 
replaced by Michael’s Y, defined by (24). The results of 5 2 can thus be taken over 
at  once, simply by replacing @ by Y, i.e. 

(a) A sufficient condition for stability to axisymmetric perturbations of a non- 
dissipative swirling flow with axial current is 

Y 2 awl2 everywhere, (37) 

or that the local Richardson number J ( y )  = Y/ W t 2  should nowhere be less than a. 
( b )  If Y 2 0, i.e. if the flow is stable according to Michael in the absence of 

axial flow, then the complex wave speed c of any instability which might occur 
when axial flow is present must lie inside the semicircle in the upper half plane 
which has the range of W for diameter. 

We note one more result, an upper bound on the growth rate of any instability, 
which is obtained as in the case of (22) above: 

(38) (4 k2c; < Max [t W t 2  - Y]. 
Thus, at least so far as stability to axisymmetric perturbations is concerned, the 
circular magnetic field, like the swirl component V ,  has an effect analogous to a 
density stratification in a radial gravitational field, and the ‘ effective Richardson 
numbers ’ of circular field and swirl are additive. 

A special case of some interest arises when the applied current density J, is 
independent of r ,  so that He = 27rJ0r. In  this case Y = @ and the condition for 
stability is unaffected by the current. In  fact, equation (28) shows that he = 0, 
and not only the sufficient condition for stability, but in fact the full stability 
problem is unaffected by the presence of the axial current, the only effect of the 
electromagnetic stress being to modify the basic pressure field. As remarked by 
Michael (1954) in the case W = 0,  this is physically clear because He/r is constant 
following particles, and in the case of uniform current is initially the same for all 
particles, so that whatever axisymmetric motion may be imposed on the fluid, 
the magnetic field strength remains the same at  every point. This conclusion about 
the irrelevance of a uniform current to instability with respect to axisymmetric 
perturbations also holds in fact when viscosity and finite conductivity are 
allowed for (with non-conducting walls); in this case it can also be shown that any 
unstable wave must have he = 0 (physically, the magnetic field gives no oppor- 
tunity for magnetic diffusion) and that H, then disappears from the equations. 
However, the uniform axial current may have an effect on the decay rate of stable 
perturbations, which need not necessarily have he = 0. 

5. Axial flow with uniform axial magnetic field 
In  this section we suppose V = He =_ 0,  and study the effect on stability to 

axisymmetric perturbations of a uniform axial magnetic field H,. This problem, 
allowing also for finite electrical conductivity, has been discussed recently by 
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Jain (1961). He has concluded that all inviscid axial flows with uniform axial 
magnetic field are stable with respect to axisymmetric perturbations, but this 
conclusion is unwarranted. It arises from the fact that he tacitly assumed in his 
analysis that the azimuthal velocity and magnetic field components (v and he) 
were not identically zero. However, the perturbation equations may have 
solutions with v = he = 0, and in fact his argument essentially proves only that 
if there is to be any (axisymmetric) unstable wave, v and he must be zero. It does 
not exclude instability if they are zero. (That v = he = 0 for any axisymmetric 
instability can also be shown when viscosity is allowed for too, by the same 
argument .) 

The perturbation equations for the present problem, derived in the usual way 
with eik(z-d) (2, t)-dependence are: 

ik (  W - C )  u - (,/.LH,/~~TP) ikh, = - Dp, 

ik( W - c) w + u D  W - (pH0/4.rrp) ikh, = - ikp,  

ik (  W - C )  h, = Ho iku,  (41) 

ik (  W - C) h, = hr D W + ikHow, (42) 

D, u+ilcw = 0,  (43) 

D, h, + ikh, = 0, (44) 

and v = h, = 0. (45) 

(The notation is as in 9 4; (45), as mentioned above, follows from Jain’s argument, 
assuming ci > 0, even with viscosity and finite conductivity, but in the present 
case it is an immediate consequence of the perturbation equations.) We now 
introduce P as before, 

u = i k ( W - c ) F ,  (46) 

and then find from (40)-(44) (only four of which are independent), 

w = -D*[ (W-c )F] ,  

h, = ikH,F, 

h,= -H,D*F, 

p = [( W - c ) ~  - ( ,~H:/47~p)]  D* F. 

Using these equations in (39), we finally obtain the stability equation for F: 

D{[(  W - c ) ~ -  V;] D,  P}- k2[( W - C ) ~ -  V;] F = 0, (51) 

where V, = (,uH;/4np)4 is the Alfven velocity. 
In  the present case we do not have a physical mechanism analogous to density 

stratification with gravity, and we have not found any analogue of the Richardson 
number theorem. However, we can deduce from (51) an analogue of the semi- 
circle theorem, as follows: multiply (51) by rF and integrate over (&,RZ). This 
gives 

J C [ ( W - C ) ~ -  V~][ID,F12+k21F12]rdr = 0. 
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Taking c = c ,+ic i ,  setting Q = [ID,F12+k21J’12]r, and separating real and 
imaginary parts we obtain 

As in 5 2 ,  these equations imply (ci > 0) 

and 

( 5 2 )  

(53) 

Supposing that a < W < b we thus find 

and thus- {c, - $(a + b)}2 + C? < $(a - b)2  - V5.  (56) 

The complex wave speed c for any unstable wave must lie in a semicircle in the 
upper half plane, concentric with the semicircle having the range of W for 
diameter, and of radius [{$(a - b)}2 - V;]*. This result is in a sense stronger than 
the previous semicircle theorem, for by itself it  gives: 

A sufficient condition for stability to axisymmetric perturbations of an axial 
flow with uniform axial magnetic field is that the Alfvh speed of the axial field 
should exceed half the maximum velocity difference. 

This result is the axisymmetric analogue of the two-dimensional result of 
Velikhov ( 1 9 5 9 ~ ) .  It may be given a certain physical rationalization by stating 
i t  in the following way: instability is possible only if there are two radii, rl and r2, 
in the flow such that W(r,) + V, = W(r,) - V,, i.e. such that Alfven waves moving 
in opposite directions, relative to the two local flow velocities, do not move 
relative to each other. Of course such localized Alfvh waves are not really 
possible except for very short wavelengths, but one may perhaps loosely think 
of the instability as arising from an interaction in this way. If the magnetic 
field is strong enough, the two waves cannot move at the same absolute speed 
and do not reinforce each other. We offer this interpretation only as a simple 
way of remembering the stability condition, and do not insist on its physical 
significance. 

To give an example illustrating this stability condition we may make use of the 
‘wide narrow-gap approximation’ and take over Drazin’s (1960) example of an 
unbounded jet having W = W, in a finite interval, and W = 0 elsewhere. Drazin 
found, in the present case of a single fluid and infinite magnetic Reynolds number, 
that this flow is stable when, and only when, pHi/4mp 2 (+Wo)2, i.e. instability 
occurs exactly a t  the point a t  which the general stability criterion ceases to 
forbid it. The axisymmetric analogue of Drazin’s jet has been studied by 
Michael (1962), the smallest magnetic field which will stabilize axisymmetric 
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perturbations of all wavelengths again being found to be given exactly by the 
semicircle theorem. (This ‘exactness’ in these examples is no doubt a feature of 
the discontinuous profiles, and is not to be expected in general.) 

6. Non-dissipative Couette flow with axial current and uniform axial 
magnetic field 

In  this section we take for the basic flow U = [0, V ( r ) ,  01, and for the basic 
magnetic field H = [0, H,(r), H,], in cylindrical co-ordinates. The stability 
equation in this case, with the same notation as before, is (cf. Chandrasekhar 
1961, $84)  

(C2-v; ) (DD*-k2)F+ 

The case H, = 0 was considered by Velikhov (1959b) and Chandrasekhar 
(1960b), while the case I‘ = 0 was given by Chandrasekhar (1961,s 84a). In  both 
these special cases it is easily seen that c2 is real; in the general case this is not 
necessarily so, and this requires some modification of the arguments of Velikhov 
and Chandrasekhar. Multiplication of (57) by rF and integration over (XI, R2) 
gives 

or 

Now multiply (58)  by 2 and take the imaginary part 

This is evidently impossible with ci > 0 if the integrand of the second integral is 
everywhere non-negative, so a sufficient condition for stability is that 

In  the special cases V = 0 or H, = 0 this reduces to the conditions given by 
Chandrasekhar and Velikhov. 
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As in the two special cases, this condition does not involve H,, and conse- 
quently exhibits the same apparent paradox that the condition (60) for stability 
with H, > 0, however small, does not reduce to Michael's condition Y > 0 for 
Ho -+ 0. In  fact, if Y > 0 but (60) is not satisfied, we may expect an axial 
magnetic field to have a destabilizing effect, however small it is, though it will 
also stabilize the flow for any fixed wave number if H, is large enough. The 
physical reason for this destabilizing effect was clearly explained by Veliklov 
( 1959 b) ,  in the case H, = 0, whoalso pointed out that the apparent 'discontinuity ' 
in the stability condition at  H, = 0 would undoubtedly be removed if dissipative 
effects were taken into account. That the 'discontinuity' is only apparent can in 
fact be seen already in the non-dissipative theory, for we can show that if Y 2 0 
then, for any fixed k, if we have an instability its growth rate kci must approach 
zero as H, + 0. To see this, note that if ci > 0 and Y 2 0, (59) implies 

If we suppose that V, -+ 0 in this relation, and that ci does not approach zero, the 
third integral is easily seen in the limit just to cancel the second, thus producing 
a contradiction; consequently ci and so lcc, must approach zero as H, -+ 0,  if 
Y 2 0, and we recover Michael's condition. 

That a sufficiently strong axial field will stabilize at any fixed wave number can 
also be readily seen from (61), for it implies 

and this is impossible if V, is large enough. If R, - R, is finite this conclusion holds 

uniformly for all wave numbers, for then ID, FI r dr is bounded from below 

by a constant, say k,, times j: lFI2rdr and we have 

1: [ 
7. Summary 

We have not been able to obtain stability criteria for flows in which all four 
components, V ,  W ,  H,, H, are simultaneously present. When one of the four is 
zero, we have results in two of the four possibilities (only axisymmetric perturba- 
tions are considered) : 

(a )  Ho = 0 ( 5  4). Stability is assured if Y 2 4W'z everywhere. The semicircle 
theorem holds for unstable waves if Y 2 0. 

(b)  W = 0 ( 4  6). Stability is assured if Y - 4r-,( V 2  +pH2/47rp) 2 0 everywhere 
when H, + 0 and if Y 2 0 everywhere when H, = 0. When two (or more) of the 
four components are absent the only case which is not included in the above is 
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( c )  V = Ho = 0 ( 5  5 ) .  The modified semicircle theorem holds: the complex c of 
any unstable wave must lie in the semicircle in the upper half plane 

where a 6 W 6 b, and stability is assured if V’ > +(b - a).  The cases which remain 
open are: ( d )  H, alone absent, ( e )  V alone absent, and, of course, (f) all four 
present. 
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